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Toward a scalable and consistent 
manufacturing process for  
the production of human  
mesenchymal stem cells

Qasim A Rafiq

The development of novel, affordable and efficacious therapeutics will be 
necessary to ensure the continued progression in the standard of global 
healthcare. With the potential to address previously unmet patient needs 
as well as tackling the social and economic effects of chronic and age-re-
lated conditions, cell therapies will lead the new generation of healthcare 
products set to improve health and wealth across the globe. However, 
if many of the small-to-medium enterprises (SMEs) engaged in much of 
the commercialization efforts are to successfully traverse the ‘Valley of 
Death’ as they progress through clinical trials, there are a number of chal-
lenges that must be overcome. No longer do the challenges remain bio-
logical but rather a series of engineering and manufacturing issues must 
also be considered and addressed.  

Revenues for the cell therapy industry 
recently exceeded US$1 billion [1], 
and with market approvals of stem cell 
therapy products, including Prochy-
mal’s (Osiris Therapeutics, Maryland, 
USA) human mesenchymal stem cell 
(hMSC) therapy, there is growing 
momentum and optimism that the 
cell therapy industry, learning from 
the failings of the tissue engineering 

field, will come to fruition [2]. This 
is buoyed by government investment 
and industry commitment, as evi-
denced in the UK by the creation of 
the Cell and Gene Therapy Catapult 
and Manufacturing Centre [3], in 
Canada by the emergence of the Cen-
tre for Commercialization of Regen-
erative Medicine and centre for ad-
vanced therapeutic cell technologies 

(with investment from FedDev 
Ontario and GE Healthcare) and a 
newly-introduced regulatory and re-
imbursement environment in Japan 
conducive for cell therapy manufac-
ture [4]. Cell therapies are no longer 
solely a pursuit of scientific endeavor 
but a commercially viable industry in 
its own right – and a burgeoning one 
at that [1].  
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Human MSCs are a promising 
cell candidate for cell therapies 
due to their therapeutic efficacy, 
as determined by pre-clinical and 
clinical studies [5–8], their rela-
tive ease and multiple sources of 
isolation (Table 1), multi-lineage 
differentiation capacity and the 
ability to expand these cells in vi-
tro [9]. With over 450 clinical tri-
als involving the use of hMSCs by 
January 2015 [10], the interest in 
commercializing hMSC therapies 
is clear. However, in July 2011, 
the UK’s Office for Life Science 
published a report which identi-
fied that “without the ability to 
manufacture, store, transport and 
distribute regenerative medicine 
products, the therapies would 
never become mainstream clinical 
practice” [11]. Bioprocess develop-
ment and consistent manufacture 
is a key challenge that SMEs have 
faced, or will soon encounter, as 
they navigate through clinical tri-
als; the ability to fulfil the increas-
ing demand for cells at a quality 
and quantity required for thera-
peutic application. 

BIOPROCESSING  
CONSIDERATIONS FOR 
HMSC THERAPIES 
There are a number of bioprocess 
challenges and considerations for 
the development of a hMSC thera-
py [36,37]; however this article will 
focus on those solely related to the 
expansion of hMSCs. Essentially, 
these challenges can be identified as 
follows:

ff Cell quality – the cell forms the 
basis of the product

ff Cell quantity – the number of 
cells required for therapeutic 
applications

ff Cell nature – the anchorage-
dependency of many cell therapy 
candidates

ff Unprecedented and an undefined 
methodology

The large-scale in vitro expansion 
of cells, where the cell forms the 
basis of the product, is a paradigm 
shift for the biotechnology indus-
try. Where the cell is the product, 
i.e., what is to be injected into the 
patient, there must be efficient har-
vest and the cell must retain its key 
quality attributes with respect to 
identity, potency, purity and safety 
[38] regardless of the intended ap-
plication. In addition to cell quality, 
obtaining the numbers of cells re-
quired for therapeutic applications 
is another significant challenge. For 
the majority of applications, the ex-
pansion of hMSCs in  vitro will be 
required to increase the number of 
functional cells to elicit a therapeu-
tic benefit. 

As illustrated in Table 2, the num-
bers of MSCs delivered to patients 
in clinical trials varies greatly but 
for a patient of 70 kg, 0.3 to 5 x 108 
cells per treatment may be required. 
For allogeneic treatments this will 
therefore mean generating lot sizes 
of potentially trillions of cells [39]. 

f f TABLE 1
Sources of mesenchymal stem cells.

Source Refs
Bone marrow [7], [9], [12], [13]

Adipose tissue [15]

Synovium [16]

Trabecular bone [17], [18], [19], [20]

Skin Tissue [21], [22]

Adult peripheral blood [23], [24]

Umbilical cord (Wharton’s Jelly) [25]

Cord blood [26], [27]

Deciduous teeth [28]

Fetal blood, bone marrow, liver & lung [29], [30]

Muscle [31], [32], [33]

Pericyte [34]

Periosteum [35]



Future leader perspective 

129Cell & Gene Therapy Insights - ISSN: 2059-7800 

CONSIDERATIONS FOR 
THE CULTURE OF hMSCS

Dissolved oxygen

In conventional mammalian cell 
culture (for the production of het-
erologous recombinant proteins), 
the level of dissolved oxygen in the 
growth medium is important and as 
such is always measured and often 
carefully controlled.  Measurements 
in monolayer culture of hMSCs in 
T-flasks are usually limited to cell 
viability, confluency and those re-
lated to post culture functionality. 
However in order to inform the ba-
sis of the development of the larger 
scale production of hMSCs, the fac-
tors controlling the process need to 
be fully understood. 

The general belief for hMSC 
expansion under controlled oxy-
gen concentrations is that the con-
centration in the growth medium 

should mimic the in vivo physiolog-
ical conditions from which the hM-
SCs have been derived, in this case, 
bone marrow. However, there are 
conflicting results. Work has shown 
[52–54] that under “normoxic” con-
ditions (i.e. 20 % O2 / 75% N2, 5 
% CO2 v/v in the incubator, nom-
inally ≡100 % dO2), the expansion 
of hMSCs is inferior compared 
to that obtained under “hypox-
ic” conditions (~ 2–5% O2 v/v in 
the incubator, nominally ≡ 10–25 
% dO2). Other studies, however, 
have demonstrated that, based on 
the concentration in the incubator, 
10–25 % dO2 (‘hypoxia’) can have 
an impact on either cell quality by 
attenuating cell differentiation [55] 
or cell quantity by reducing cell 
proliferation [56–58] in comparison 
to 100% dO2 (‘normoxia’). Clearly 
the problem is not yet fully resolved 
and there are a number of possible 

f f TABLE 2
Examples of treatments and the number of cells transplanted or injected into patients 
during each trial. 

Condition Number of cells delivered per treatment Refs

AUTOLOGOUS

BM-MSCs Ischemic heart failure 20x106, 100x106 or 200x106 cells/patient [40]

BM-MSCs Amyotrophic lateral sclerosis 11–120x106 cells/patient [41]

BM-MSCs Stroke 60–160x106 cells/patient [42]

BM-MNCs Stroke 1 x 108 cells/patient [43]

BM-MSCs Graft versus host disease 1–2x106 cells/kg [44]

BM-MSCs
Cartilage repair (osteoarthritic 
knee) 13x106 cells/patient [45]

BM-MSCs Multiple sclerosis 32–52x106 cells/patient [46]

BM-MSCs Multiple sclerosis 1–2x106 cells/kg body weight [47]

ALLOGENEIC

Prochymal® Graft versus host disease 2 or 8x106 cells/kg body weight [48]

BM-MSCs Graft versus host disease 1.7–2.3x106 cells/kg body weight [49]

Prochymal® Myocardial infarction
0.5x106, 1.6x106 or 5x106 cells/kg body 
weight [50]

PD-MSCs Diabetes 1.2–1.5x106 cells/kg body weight [51]

Prochymal® is an allogeneic bone marrow-derived MSC product from Osiris Therapeutics Inc (USA). Abbreviations: BM-MSCs: bone 
marrow-derived MSCs; BM-MNCs: bone marrow mononuclear cells; PD-MSCs: placenta-derived MSCs.
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explanations for this difference, not 
least of which may be cell line spec-
ificity or culture conditions.

Serum-free media 

The culture of mammalian cells, be 
it for the production of proteins, 
vaccines or cell therapies, requires 
complex nutrients which have tra-
ditionally been provided in the 
form of growth-factor-rich media 
supplemented with Fetal Bovine 
Serum (FBS) [59]. It is widely ac-
knowledged however that the ad-
dition of FBS is undesirable for a 
variety of reasons and efforts are 
being made to develop defined, 
serum-free processes [60]. The 
oft-cited reason for avoiding the 
use of serum is the risk of contam-
ination through the introduction 
of adventitious, xenogeneic agents 
[60]. This is often the biggest driv-
er for the switch from serum-based 
to serum-free processes given the 
perceived FDA aversion towards 
serum [61]; however this risk is 
mitigated in part by the rigorous 
screening and selection process re-
quired for GMP-grade serum. 

Batch-to-batch variability of se-
rum is another reason for the shift 
away from serum-based processes 
[62]. Serum is poorly defined and 
there can be significant variation 
between batches, resulting in a lack 
of reproducibility. For an industry 
where the “process is the product”, 
standardization is crucial and vari-
ation in culture conditions outside 
of pre-defined limits is unaccept-
able. Moving towards a well-defined 
medium will allow for the develop-
ment of standardized, reproducible 
manufacturing methods and would 
avoid costly serum batch testing.  

Moreover, Brindley et al posit 
that the biggest concern with em-
ploying serum-based processes is 

not necessarily due to the perceived 
regulatory issue, as GMP-grade se-
rum can be sourced, but rather a 
supply and availability issue [61]. 

In light of the concerns regard-
ing the use of serum, there is now a 
growing body of literature investigat-
ing the use of serum-free media for 
monolayer culture [60,62–67] and 
microcarrier-based culture of hM-
SCs [68–70] with varying degrees of 
success. Table 3 provides an overview 
of various commercially available se-
rum/xeno-free hMSC media.

EXPANSION 
TECHNOLOGIES
To be able to obtain a sufficient 
number of cells for a cell therapy, be 
it autologous or allogeneic, ex vivo 
cell expansion is an essential step 
in the development process. There 
are numerous techniques which are 
currently employed for the scale-up 
or scale-out of adherent cells with 
their own respective advantages 
and disadvantages. This article will 
focus specifically on microcarriers. 
A more detailed comparison of the 
various expansion systems is provid-
ed by the author [71,72].

Microcarriers

Microcarrier technology provides 
a significantly larger surface area 
per unit volume of bioreactor [73] 
compared to monolayer culture, 
and combines the potential ease of 
scalability, process monitoring and 
control capability associated with 
bioreactor cultures that makes bio-
reactor culture common place in 
the biopharmaceutical arena. Nu-
merous types of microcarrier parti-
cles are commercially available with 
varying surfaces, charge, structures 
and other properties (Table 4).
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MSC MICROCARRIER 
STUDIES

Microcarrier culture 
conditions

It has become increasingly clear 
that to develop an optimal mi-
crocarrier-based hMSC culture 
process, parameters for the cul-
ture must be identified and op-
timized. Table 5 provides a list of 
these various parameters for dif-
ferent stages of the process.  

Microcarrier selection

At present, there is no unified set of 
culture conditions for the expan-
sion of hMSCs on microcarriers 
given the infancy of the research. 
Some groups have demonstrated 
successful growth on one partic-
ular microcarrier over another, 
for example Schop and colleagues 
found that when comparing nine 
different microcarriers, Cytodex-1 
was selected after it demonstrat-
ed the highest seeding efficien-
cy [74]. In contrast, Dos Santos 
and colleagues found that having 
previously used Cultispher-S [75] 
(a gelatin-based microcarrier), a 
xeno-free approach was required 
for the adoption of such a process 
for clinical-grade expansion, and 
therefore selected Plastic P102-L. 
Our group developed a systematic 
microcarrier screening process for 
hMSCs including 13 commer-
cially available microcarriers and 
found that Collagen and Plastic 
P102-L microcarriers were opti-
mal for hMSC growth for three 
different donor cell lines [76].   

Medium selection

As mentioned previously, there is 
a growing body of literature focus-
ing on hMSC monolayer culture 
with serum-free medium. Given 
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that work is still ongoing to deter-
mine the optimal monolayer hMSC 
culture conditions, it is likely that mi-
crocarrier culture conditions will lag 
behind, as is evident by fewer studies 
investigating serum/xeno-free hMSC 
microcarrier cultures. Dos Santos and 
colleagues have employed a complete-
ly xeno- and serum-free microcarrier 
culture process, where they used the 
StemPro® MSC xeno-free medium 
[68]. They found that they were able 
to effectively culture bone-marrow-
and adipose-derived hMSCs under 
such conditions, reaching a maxi-
mum cell density of 2.0 x 105 cells/
mL for the bone marrow derived hM-
SCs in a working volume of 80 mL. 

Using Prime-XV, we achieved a max-
imum cell density of > 3.0 x 105 cells/
mL in a working volume of 100 mL 
on Plastic P102-L microcarriers [69]. 

Seeding density

It has been suggested in the literature 
that seeding density has an effect on 
the proliferation of hMSCs grown as 
a monolayer, with lower seeding den-
sities (100 cells/cm2) demonstrating 
increased proliferation compared to 
higher seeding densities (5000 cells/
cm2) [77,78]. In animal and human 
MSC microcarrier culture, this is an 
area which has also received atten-
tion, with studies investigating the 
effect of different cell-to-bead ratios 
[79–81]. Frauenschuh and colleagues 
described the cell attachment pro-
cess as following a Poisson distribu-
tion [81], and found that initial cell 
seeding densities ranging from 1–3 
x 106 cells/100 cm2 surface area had 
little effect on attachment. With re-
spect to the cell-to-bead ratio, there 
appears to be consistency in the data 
presented with studies by Hewitt 
and colleagues [79] and Yuan and 
colleagues [80] suggesting that a ratio 
of 5 cells-to-bead may be optimal.

Operating conditions 

The combination of microcarrier 
culture with a bioreactor system 
provides all of the benefits asso-
ciated with bioreactors such as a 
greater level of culture homogeneity 
achieved via agitation as well as pro-
cess monitoring and control. This 
however means there is the need to 
consider and optimize the operating 
parameters of the bioreactor also. 

Much of the research carried out 
thus far attempts to demonstrate the 
effect of some of the aforementioned 
parameters on hMSC yield and qual-
ity. Dos Santos and colleagues opted 
to employ an intermittent agitation 

f f TABLE 5
Parameters for each hMSC microcarrier culture pro-
cess step with a list of studies which have investigated 
this particular parameter. 

Stage of 
process

Parameter Studies

Vessel 
configuration

Impeller selection
Baffles
Vessel geometry

[79]
-
-

Inoculation

Impeller delay
Intermittent/constant 
agitation
Cell/microcarrier seeding 
density

[82], [83]

[80]

[81], [80], [79]

Agitation
Agitation speed
Intermittent/constant 
agitation

-
[68], [74]

Culture

Medium selection
Microcarrier selection

pH
dO

2
 / dCO

2

Sparging
Addition of extra 
microcarriers
Mode of operation

[69], [70], [84]
[74], [85], [68], [86] 

[87], [76]

[87], [85]

-
[85]

-

Medium 
exchange

Level of medium exchange
Frequency of medium 
exchanges

[75]

[75]

Harvest
Dissociation reagent
Agitation speed

-
[88, 89]

A (-) indicates no studies were found to have investigated this parameter as of yet.
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strategy whereby during the first 24 
h, the culture was agitated for 15 
min at 25 rpm after which followed 
a period of non-agitation for 2 h [68]. 
After this, the culture was agitated 
constantly at 40 rpm for the duration 
of the culture. Schop and colleagues 
instead employed an agitation strate-
gy of constant agitation at 30 rpm for 
18 h, after which the culture was con-
stantly agitated at 40 rpm [74]. 

Medium exchange regime is an-
other key consideration; the reg-
ularity and amount of medium 
exchange has to be controlled care-
fully. With respect to hMSC micro-
carrier culture, the effect of medium 
exchange regime was demonstrated 
by Eibes and colleagues who com-
pared two medium exchange re-
gimes; (i) a 25% medium exchange 
every 48 h and (ii) a 25% medium 
exchange every 24 h starting after 
day 3 [75]. They found that the first 
medium exchange regime resulted 
in a significant depletion of glucose 
during the exponential phase of cell 
growth, with an associated increase 
in ammonium concentration which 
reached inhibitory values. The sec-
ond medium exchange regime did 
not result in such adverse metab-
olite concentrations, with glucose 
present throughout the exponential 
phase and the level of ammonium 
not reaching inhibitory values [75]. 

Microcarrier harvest

A key factor in the choice of micro-
carrier is the ability to efficiently har-
vest the cells after hMSC expansion, 
a decision which will impact down-
stream processing. In the majority of 
the studies listed in Table 6, the work-
ing volume is below 200  mL and 
there is little focus on the harvesting 
procedure, or the ability to effective-
ly harvest should the process increase 
in scale. This would appear to suggest 

that most, if not all of the work in-
volving the expansion of hMSCs on 
microcarriers, has focussed solely on 
the attachment, expansion and cul-
ture conditions of hMSCs. Detach-
ment of cells from the microcarrier 
surface and subsequent retention of 
cell quality is equally as important as 
cell attachment and proliferation giv-
en that the product of interest for cell 
therapies is the cell itself. This prob-
lem will only be exacerbated as ex-
pansion scale increases and therefore 
it is crucial to consider cell harvesting 
strategies from the outset so as to en-
sure a viable, holistic bioprocess. 

TRANSLATIONAL INSIGHT
The successful development of clini-
cally-relevant, reimbursable cell ther-
apy products and other advanced 
therapeutics will require a shift in 
mindset toward one that values, un-
derstands and applies translational re-
search – the type of research that takes 
science from the bench and addresses 
technological, manufacturing, com-
mercial, regulatory and clinical chal-
lenges, thereby enabling the delivery 
of healthcare and economic benefits. 
It is my contention that early-career 
researchers (ECRs), from both in-
dustry and academia, with a strong 
grounding in translation research, 
are therefore critical to accelerate the 
development process [82]. Although 
the translational pathway can be re-
source intensive, application-specific 
and fraught with obstacles, there are 
fundamental principles which can 
provide guidance along the prickly 
path [82]. Further understanding of 
how a product’s CQAs correlate with 
clinical efficacy and better characteri-
sation techniques will result in more 
consistent, standardized manufactur-
ing processes, and as with biologics 
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production, there will be a continued 
increase in the cell densities that are 
obtained. But perhaps most impor-
tantly, with ever-increasing num-
bers of highly-trained, multidisci-
plinary ECRs emerging from world 
class training centres (the Catapult, 
CCRM and UK EPSRC Centres for 
Doctoral Training to name but a few), 
there is great reason to be optimistic 
and I fully believe that this generation 
of ECRs will harvest (pun intended) 
the crops planted and nurtured by the 

previous generation of translational 
scientists, engineers and clinicians 
who have pioneered the field.     
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